# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MNIST dataset implementations for the image classification field in computer vision.
More info for the dataset can be found `here <http://yann.lecun.com/exdb/mnist/>`__.
"""
import torch
try:
from torchvision import transforms
from torchvision.datasets import MNIST
torchvision_import_error = None
except Exception as torchvision_error:
MNIST = object # default for constructor
transforms = None
torchvision_import_error = torchvision_error
from sparseml.pytorch.datasets.registry import DatasetRegistry
from sparseml.utils.datasets import default_dataset_path
__all__ = ["MNISTDataset"]
[docs]@DatasetRegistry.register(
key=["mnist"],
attributes={
"num_classes": 10,
"transform_means": [0.5],
"transform_stds": [1.0],
"num_channels": 1,
},
)
class MNISTDataset(MNIST):
"""
Wrapper for MNIST dataset to apply standard transforms.
:param root: The root folder to find the dataset at, if not found will download here
:param train: True if this is for the training distribution,
False for the validation
:param flatten: flatten the MNIST image from (1, 28, 28) to (784)
"""
def __init__(
self,
root: str = default_dataset_path("mnist"),
train: bool = True,
flatten: bool = False,
):
if torchvision_import_error is not None:
raise torchvision_import_error
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]
)
super().__init__(root, train, transform, None, True)
self._flatten = flatten
def __getitem__(self, index):
img, target = super().__getitem__(index)
if self._flatten:
img = torch.flatten(img)
return img, target