sparseml.pytorch.datasets.classification package
Submodules
sparseml.pytorch.datasets.classification.cifar module
CIFAR dataset implementations for the image classification field in computer vision. More info for the dataset can be found here.
-
class
sparseml.pytorch.datasets.classification.cifar.
CIFAR100Dataset
(root: str = '~/.cache/nm_datasets/cifar100', train: bool = True, rand_trans: bool = False)[source] Bases:
torchvision.datasets.cifar.CIFAR100
Wrapper for the CIFAR100 dataset to apply standard transforms.
- Parameters
root – The root folder to find the dataset at, if not found will download here
train – True if this is for the training distribution, False for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
-
class
sparseml.pytorch.datasets.classification.cifar.
CIFAR10Dataset
(root: str = '~/.cache/nm_datasets/cifar10', train: bool = True, rand_trans: bool = False)[source] Bases:
torchvision.datasets.cifar.CIFAR10
Wrapper for the CIFAR10 dataset to apply standard transforms.
- Parameters
root – The root folder to find the dataset at, if not found will download here
train – True if this is for the training distribution, false for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
sparseml.pytorch.datasets.classification.imagefolder module
Imagenet dataset implementations for the image classification field in computer vision. More info for the dataset can be found here.
-
class
sparseml.pytorch.datasets.classification.imagefolder.
ImageFolderDataset
(root: str = '~/.cache/nm_datasets/imagenet', train: bool = True, rand_trans: bool = False, image_size: int = 224)[source] Bases:
torchvision.datasets.folder.ImageFolder
,sparseml.pytorch.datasets.image_classification.ffcv_dataset.FFCVImageNetDataset
Wrapper for the ImageFolder dataset to apply standard transforms. Additionally scales the inputs based off of the imagenet means and stds.
Dataset should be in the following form locally on disk:root/dog/xxx.pngroot/dog/xxy.pngroot/dog/xxz.pngroot/cat/123.pngroot/cat/nsdf3.pngroot/cat/asd932.png- Parameters
root – The root folder to find the dataset at
train – True if this is for the training distribution, False for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
image_size – the size of the image to output from the dataset
-
property
num_classes
sparseml.pytorch.datasets.classification.imagenet module
Imagenet dataset implementations for the image classification field in computer vision. More info for the dataset can be found here.
-
class
sparseml.pytorch.datasets.classification.imagenet.
ImageNetDataset
(root: str = '~/.cache/nm_datasets/imagenet', train: bool = True, rand_trans: bool = False, image_size: int = 224)[source] Bases:
torchvision.datasets.folder.ImageFolder
,sparseml.pytorch.datasets.image_classification.ffcv_dataset.FFCVImageNetDataset
Wrapper for the ImageNet dataset to apply standard transforms.
- Parameters
root – The root folder to find the dataset at
train – True if this is for the training distribution, False for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
image_size – the size of the image to output from the dataset
sparseml.pytorch.datasets.classification.imagenette module
Imagenette and Imagewoof dataset implementations for the image classification field in computer vision. More info for the dataset can be found here.
-
class
sparseml.pytorch.datasets.classification.imagenette.
ImagenetteDataset
(root: str = '~/.cache/nm_datasets/imagenette', train: bool = True, rand_trans: bool = False, dataset_size: sparseml.utils.datasets.imagenette.ImagenetteSize = <ImagenetteSize.s160: 's160'>, image_size: Optional[int] = None, download: bool = True)[source] Bases:
sparseml.utils.datasets.imagenette.ImagenetteDownloader
,torchvision.datasets.folder.ImageFolder
,sparseml.pytorch.datasets.image_classification.ffcv_dataset.FFCVImageNetDataset
Wrapper for the imagenette (10 class) dataset that fastai created. Handles downloading and applying standard transforms.
- Parameters
root – The root folder to find the dataset at, if not found will download here if download=True
train – True if this is for the training distribution, False for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
dataset_size – The size of the dataset to use and download: See ImagenetteSize for options
image_size – The image size to output from the dataset
download – True to download the dataset, False otherwise
-
class
sparseml.pytorch.datasets.classification.imagenette.
ImagenetteSize
(value)[source] Bases:
enum.Enum
Dataset size for Imagenette / Imagewoof. full does not resize the original dataset at all. s320 resizes the images to 320px. s160 resizes the images to 160px.
-
full
= 'full'
-
s160
= 's160'
-
s320
= 's320'
-
-
class
sparseml.pytorch.datasets.classification.imagenette.
ImagewoofDataset
(root: str = '~/.cache/nm_datasets/imagewoof', train: bool = True, rand_trans: bool = False, dataset_size: sparseml.utils.datasets.imagenette.ImagenetteSize = <ImagenetteSize.s160: 's160'>, image_size: Optional[int] = None, download: bool = True)[source] Bases:
sparseml.utils.datasets.imagenette.ImagewoofDownloader
,torchvision.datasets.folder.ImageFolder
,sparseml.pytorch.datasets.image_classification.ffcv_dataset.FFCVImageNetDataset
Wrapper for the imagewoof (10 class) dataset that fastai created. Handles downloading and applying standard transforms. More info for the dataset can be found here <https://github.com/fastai/imagenette>
- Parameters
root – The root folder to find the dataset at, if not found will download here if download=True
train – True if this is for the training distribution, False for the validation
rand_trans – True to apply RandomCrop and RandomHorizontalFlip to the data, False otherwise
dataset_size – The size of the dataset to use and download: See :py:func ~ImagewoofSize for options
image_size – The image size to output from the dataset
download – True to download the dataset, False otherwise
sparseml.pytorch.datasets.classification.mnist module
MNIST dataset implementations for the image classification field in computer vision. More info for the dataset can be found here.
-
class
sparseml.pytorch.datasets.classification.mnist.
MNISTDataset
(root: str = '~/.cache/nm_datasets/mnist', train: bool = True, flatten: bool = False)[source] Bases:
torchvision.datasets.mnist.MNIST
Wrapper for MNIST dataset to apply standard transforms.
- Parameters
root – The root folder to find the dataset at, if not found will download here
train – True if this is for the training distribution, False for the validation
flatten – flatten the MNIST image from (1, 28, 28) to (784)
Module contents
Datasets related to image classification field in computer vision