Source code for sparseml.keras.framework.info

# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Functionality related to integrating with, detecting, and getting information for
support and sparsification in the Keras framework.
"""

import logging
from typing import Any

from sparseml.base import Framework, get_version
from sparseml.framework import FrameworkInferenceProviderInfo, FrameworkInfo
from sparseml.keras.base import check_keras_install, is_native_keras, keras, tensorflow
from sparseml.keras.sparsification import sparsification_info
from sparseml.sparsification import SparsificationInfo


__all__ = ["is_supported", "detect_framework", "framework_info"]


_LOGGER = logging.getLogger(__name__)


[docs]def is_supported(item: Any) -> bool: """ :param item: The item to detect the support for :type item: Any :return: True if the item is supported by keras, False otherwise :rtype: bool """ framework = detect_framework(item) return framework == Framework.keras
[docs]def detect_framework(item: Any) -> Framework: """ Detect the supported ML framework for a given item specifically for the keras package. Supported input types are the following: - A Framework enum - A string of any case representing the name of the framework (deepsparse, onnx, keras, pytorch, tensorflow_v1) - A supported file type within the framework such as model files: (onnx, pth, h5, pb) - An object from a supported ML framework such as a model instance If the framework cannot be determined, will return Framework.unknown :param item: The item to detect the ML framework for :type item: Any :return: The detected framework from the given item :rtype: Framework """ framework = Framework.unknown if isinstance(item, Framework): _LOGGER.debug("framework detected from Framework instance") framework = item elif isinstance(item, str) and item.lower().strip() in Framework.__members__: _LOGGER.debug("framework detected from Framework string instance") framework = Framework[item.lower().strip()] elif isinstance(item, str) and "keras" in item.lower().strip(): _LOGGER.debug("framework detected from keras text") # string, check if it's a string saying keras first framework = Framework.keras elif isinstance(item, str) and ( ".h5" in item.lower().strip() or ".pb" in item.lower().strip() ): _LOGGER.debug("framework detected from .h5 or .pb") # string, check if it's a file url or path that ends with h5 extension framework = Framework.keras elif check_keras_install(raise_on_error=False): if isinstance(item, keras.Model): _LOGGER.debug("framework detected from Keras instance") # keras native support framework = Framework.keras return framework
[docs]def framework_info() -> FrameworkInfo: """ Detect the information for the keras framework such as package versions, availability for core actions such as training and inference, sparsification support, and inference provider support. :return: The framework info for keras :rtype: FrameworkInfo """ cpu_provider = FrameworkInferenceProviderInfo( name="cpu", description="Base CPU provider within Keras", device="cpu", supported_sparsification=SparsificationInfo(), # TODO: fill in when available available=check_keras_install(raise_on_error=False), properties={}, warnings=[], ) gpu_provider = FrameworkInferenceProviderInfo( name="cuda", description="Base GPU CUDA provider within Keras", device="gpu", supported_sparsification=SparsificationInfo(), # TODO: fill in when available available=( check_keras_install(raise_on_error=False) and tensorflow.test.is_gpu_available() ), properties={}, warnings=[], ) return FrameworkInfo( framework=Framework.keras, package_versions={ "keras": ( get_version(package_name="keras", raise_on_error=False) if is_native_keras else get_version(package_name="tensorflow", raise_on_error=False) ), "tensorflow": get_version(package_name="tensorflow", raise_on_error=False), "onnx": get_version(package_name="onnx", raise_on_error=False), "keras2onnx": get_version(package_name="keras2onnx", raise_on_error=False), "tf2onnx": get_version(package_name="tf2onnx", raise_on_error=False), "sparsezoo": get_version( package_name="sparsezoo", raise_on_error=False, alternate_package_names=["sparsezoo-nightly"], ), "sparseml": get_version( package_name="sparseml", raise_on_error=False, alternate_package_names=["sparseml-nightly"], ), }, sparsification=sparsification_info(), inference_providers=[cpu_provider, gpu_provider], properties={ "is_native_keras": is_native_keras, }, training_available=True, sparsification_available=True, exporting_onnx_available=True, inference_available=True, )