Source code for sparseml.pytorch.optim.modifier_epoch

# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Modifiers related to controlling the training epochs while training a model
"""

from sparseml.pytorch.optim.modifier import PyTorchModifierYAML, ScheduledModifier
from sparseml.sparsification import EpochRangeModifier as BaseEpochRangeModifier


__all__ = ["EpochRangeModifier"]


[docs]@PyTorchModifierYAML() class EpochRangeModifier(BaseEpochRangeModifier, ScheduledModifier): """ Simple modifier to set the range of epochs for running in a scheduled optimizer (ie to set min and max epochs within a range without hacking other modifiers). Note, that if other modifiers exceed the range of this one for min or max epochs, this modifier will not have an effect. | Sample yaml: | !EpochRangeModifier: | start_epoch: 0 | end_epoch: 90 :param start_epoch: The epoch to start the modifier at :param end_epoch: The epoch to end the modifier at """ def __init__( self, start_epoch: float, end_epoch: float, ): super(EpochRangeModifier, self).__init__( start_epoch=start_epoch, end_epoch=end_epoch, end_comparator=-1 )