sparsezoo.requests package
Submodules
sparsezoo.requests.authentication module
Requests for authenticating with the sparsezoo cloud
-
sparsezoo.requests.authentication.
get_auth_header
(authentication_type: str = 'public', user_id: Optional[str] = None, app_id: Optional[str] = None, force_token_refresh: bool = False) → Dict[source] Obtain an authentication header token from either credentials file or from APIs if token is over 1 day old. Location of credentials file can be changed by setting the environment variable NM_SPARSE_ZOO_CREDENTIALS.
Currently only ‘public’ authentication type is supported.
- Parameters
authentication_type – authentication type for generating token
user_id – user id if auth type requires user_id
app_id – app id if auth type requires app_id
force_token_refresh – forces a new token to be generated
- Returns
An authentication header with key ‘nm-token-header’ containing the header token
sparsezoo.requests.base module
Code related to base functionality for making requests
-
class
sparsezoo.requests.base.
ModelArgs
(domain: Optional[str] = None, sub_domain: Optional[str] = None, architecture: Optional[Union[str, List[str]]] = None, sub_architecture: Optional[Union[str, List[str]]] = None, framework: Optional[Union[str, List[str]]] = None, repo: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, training_scheme: Optional[Union[str, List[str]]] = None, sparse_name: Optional[Union[str, List[str]]] = None, sparse_category: Optional[Union[str, List[str]]] = None, sparse_target: Optional[Union[str, List[str]]] = None, release_version: Optional[Union[str, Any]] = None, **kwargs)[source] Bases:
object
Arguments for making requests into the sparsezoo
- Parameters
domain – The domain of the model the object belongs to; e.g. cv, nlp
sub_domain – The sub domain of the model the object belongs to; e.g. classification, segmentation
architecture – The architecture of the model the object belongs to; e.g. resnet_v1, mobilenet_v1
sub_architecture – The sub architecture (scaling factor) of the model the object belongs to; e.g. 50, 101, 152
framework – The framework the model the object belongs to was trained on; e.g. pytorch, tensorflow
repo – the source repo for the model the object belongs to; e.g. sparseml, torchvision
dataset – The dataset the model the object belongs to was trained on; e.g. imagenet, cifar10
training_scheme – The training scheme used on the model the object belongs to if any; e.g. augmented
sparse_name – The name describing the sparsification of the model the object belongs to, e.g. base, pruned, pruned_quant,
sparse_category – The degree of sparsification of the model the object belongs to; e.g. none, conservative (~100% baseline metric), moderate (>=99% baseline metric), aggressive (<99% baseline metric)
sparse_target – The deployment target of sparsification of the model the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu
release_version – The sparsezoo release version for the model
-
property
architecture
The architecture of the model the object belongs to; e.g. resnet_v1, mobilenet_v1
- Type
return
-
property
architecture_id
Unique id for the model architecture containing both the architecture and sub_architecture
- Type
return
-
property
dataset
The dataset the model the object belongs to was trained on; e.g. imagenet, cifar10
- Type
return
-
property
domain
The domain of the model the object belongs to; e.g. cv, nlp
- Type
return
-
property
framework
The framework the model the object belongs to was trained on; e.g. pytorch, tensorflow
- Type
return
-
property
model_url_args
arguments for searching in the sparsezoo
- Type
return
-
property
model_url_root
root path for where the model is located in the sparsezoo
- Type
return
-
property
release_version
The sparsezoo release version for the model
- Type
return
-
property
repo
the source repo for the model the object belongs to; e.g. sparseml, torchvision
- Type
return
-
property
sparse_category
The degree of sparsification of the model the object belongs to; e.g. none, conservative (~100% baseline metric), moderate (>=99% baseline metric), aggressive (<99% baseline metric)
- Type
return
-
property
sparse_id
Unique id for how the model was sparse containing the sparse_name, sparse_category, sparse_target
- Type
return
-
property
sparse_name
The name describing the sparsification of the model the object belongs to, e.g. base, pruned, pruned_quant
- Type
return
-
property
sparse_target
The deployment target of sparsification of the model the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu
- Type
return
-
property
stub
full path for where the model is located in the sparsezoo
- Type
return
-
property
sub_architecture
The sub architecture (scaling factor) of the model the object belongs to; e.g. 50, 101, 152
- Type
return
-
property
sub_domain
The sub domain of the model the object belongs to; e.g. classification, segmentation
- Type
return
-
property
training_id
Unique id for how the model was trained containing both the dataset and training_scheme
- Type
return
-
property
training_scheme
The training scheme used on the model the object belongs to if any; e.g. augmented
- Type
return
-
class
sparsezoo.requests.base.
RecipeArgs
(domain: Optional[str] = None, sub_domain: Optional[str] = None, architecture: Optional[Union[str, List[str]]] = None, sub_architecture: Optional[Union[str, List[str]]] = None, framework: Optional[Union[str, List[str]]] = None, repo: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, training_scheme: Optional[Union[str, List[str]]] = None, sparse_name: Optional[Union[str, List[str]]] = None, sparse_category: Optional[Union[str, List[str]]] = None, sparse_target: Optional[Union[str, List[str]]] = None, release_version: Optional[Union[str, Any]] = None, recipe_type: Optional[str] = None, **kwargs)[source] Bases:
sparsezoo.requests.base.ModelArgs
Arguments for making recipe requests into the sparsezoo
- Parameters
domain – The domain of the model the object belongs to; e.g. cv, nlp
sub_domain – The sub domain of the model the object belongs to; e.g. classification, segmentation
architecture – The architecture of the model the object belongs to; e.g. resnet_v1, mobilenet_v1
sub_architecture – The sub architecture (scaling factor) of the model the object belongs to; e.g. 50, 101, 152
framework – The framework the model the object belongs to was trained on; e.g. pytorch, tensorflow
repo – the source repo for the model the object belongs to; e.g. sparseml, torchvision
dataset – The dataset the model the object belongs to was trained on; e.g. imagenet, cifar10
training_scheme – The training scheme used on the model the object belongs to if any; e.g. augmented
sparse_name – The name describing the sparsification of the model the object belongs to, e.g. base, pruned, pruned_quant,
sparse_category – The degree of sparsification of the model the object belongs to; e.g. none, conservative (~100% baseline metric), moderate (>=99% baseline metric), aggressive (<99% baseline metric)
sparse_target – The deployment target of sparsification of the model the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu
release_version – The sparsezoo release version for the model
recipe_type – The recipe type; e.g. original, transfer_learn
-
property
model_url_args
arguments for searching in the sparsezoo
- Type
return
-
property
recipe_type
The recipe type; e.g. original, transfer_learn
- Type
return
-
sparsezoo.requests.base.
parse_zoo_stub
(stub: str, valid_params: Optional[List[str]] = None) → Tuple[str, Dict[str, str]][source] - Parameters
stub – A SparseZoo model stub. i.e. ‘model/stub/path’, ‘zoo:model/stub/path’, ‘zoo:model/stub/path?param1=value1¶m2=value2’
valid_params – list of expected parameter names to be encoded in the stub. Will raise a warning if any unexpected param names are given. Leave as None to not raise any warnings. Default is None
- Returns
the parsed base stub and a dictionary of parameter names and their values
sparsezoo.requests.download module
Code related to wrapping around API calls under api.neuralmagic.com/[object]/download
-
sparsezoo.requests.download.
download_get_request
(base_url: str, args: Union[sparsezoo.requests.base.ModelArgs, str], sub_path: Optional[str] = None, force_token_refresh: bool = False) → Dict[source] Get a downloadable object from the sparsezoo for any objects matching the args
- The path called has structure:
[base_url]/download/[args.stub]/{sub_path}
- Parameters
base_url – the base url
args – the model args describing what should be downloaded for
sub_path – the sub path from the model path if any e.g. file_name for models api or recipe_type for the recipes api
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.download.
download_model_get_request
(args: Union[sparsezoo.requests.base.ModelArgs, str], file_name: Optional[str] = None, force_token_refresh: bool = False) → Dict[source] Get a downloadable model from the sparsezoo for any objects matching the args
- Parameters
args – the model args describing what should be downloaded for
file_name – the name of the file, if any, to get download info for
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.download.
download_recipe_get_request
(args: Union[sparsezoo.requests.base.ModelArgs, str], recipe_type: Optional[str] = None, force_token_refresh: bool = False)[source] Get a downloadable recipe from the sparsezoo for any objects matching the args
- Parameters
args – the model args describing what should be downloaded for
recipe_type – the recipe_type to get download info for if not original
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
sparsezoo.requests.get module
Code related to wrapping around API calls under api.neuralmagic.com/[object]/get
-
sparsezoo.requests.get.
get_model_get_request
(args: Union[sparsezoo.requests.base.ModelArgs, str], file_name: Optional[str] = None, force_token_refresh: bool = False) → Dict[source] Get a model from the sparsezoo for any objects matching the args
- Parameters
args – the model args describing what should be retrieved for
file_name – the name of the file, if any, to get model info for
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.get.
get_recipe_get_request
(args: Union[sparsezoo.requests.base.ModelArgs, str], recipe_type: Optional[str] = None, force_token_refresh: bool = False)[source] Get a recipe from the sparsezoo for any objects matching the args
- Parameters
args – the model args describing what should be retrieved for
recipe_type – the recipe_type to get recipe info for if not original
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.get.
get_request
(base_url: str, args: Union[sparsezoo.requests.base.ModelArgs, str], sub_path: Optional[str] = None, force_token_refresh: bool = False) → Dict[source] Get an object from the sparsezoo for any objects matching the args.
- The path called has structure:
[base_url]/get/[args.stub]/{sub_path}
- Parameters
base_url – the base url of the request
args – the args describing what should be retrieved
file_name – the sub path from the model path if any e.g. file_name for models api or recipe_type for the recipes api
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
sparsezoo.requests.search module
Code related to wrapping around API calls under api.neuralmagic.com/objects/search
-
sparsezoo.requests.search.
search_get_request
(base_url: str, args: sparsezoo.requests.base.ModelArgs, page: int = 1, page_length: int = 20, force_token_refresh: bool = False) → Dict[source] Search the sparsezoo for any objects matching the args
- Parameters
base_url – the base url
args – the model args describing what should be searched for
page – the page of values to get
page_length – the page length of values to get
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.search.
search_model_get_request
(args: sparsezoo.requests.base.ModelArgs, page: int = 1, page_length: int = 20, force_token_refresh: bool = False) → Dict[source] Search the sparsezoo for any models matching the args
- Parameters
args – the model args describing what should be searched for
page – the page of values to get
page_length – the page length of values to get
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
-
sparsezoo.requests.search.
search_recipe_get_request
(args: sparsezoo.requests.base.RecipeArgs, page: int = 1, page_length: int = 20, force_token_refresh: bool = False) → Dict[source] Search the sparsezoo for any models matching the args
- Parameters
args – the model args describing what should be searched for
page – the page of values to get
page_length – the page length of values to get
force_token_refresh – True to refresh the auth token, False otherwise
- Returns
the json response as a dict
Module contents
Classes for making requests with the sparsezoo