sparsezoo package
Subpackages
- sparsezoo.models package
- sparsezoo.nbutils package
- sparsezoo.objects package
- Submodules
- sparsezoo.objects.base module
- sparsezoo.objects.data module
- sparsezoo.objects.downloadable module
- sparsezoo.objects.file module
- sparsezoo.objects.metadata module
- sparsezoo.objects.model module
- sparsezoo.objects.recipe module
- sparsezoo.objects.release_version module
- sparsezoo.objects.result module
- sparsezoo.objects.tag module
- sparsezoo.objects.user module
- Module contents
- sparsezoo.requests package
- sparsezoo.utils package
Submodules
sparsezoo.main module
Script to download a model from sparse zoo
Download objects from the SparseZoo
- positional arguments:
{download,search}
- optional arguments:
- -h, --help
show this help message and exit
[–sub-architecture SUB_ARCHITECTURE] [–framework FRAMEWORK] [–repo REPO] [–dataset DATASET] [–training-scheme TRAINING_SCHEME] [–sparse-name OPTIM_NAME] [–sparse-category OPTIM_CATEGORY] [–sparse-target OPTIM_TARGET] [–release-version RELEASE_VERSION] [–page PAGE] [–page-length PAGE_LENGTH]
Search for objects from the repo.
- optional arguments:
- -h, --help
show this help message and exit
- --domain DOMAIN
The domain of the model the object belongs to; e.g. cv, nlp
- --sub-domain SUB_DOMAIN
The sub domain of the model the object belongs to; e.g. classification, segmentation
- --architecture ARCHITECTURE
The architecture of the model the object belongs to; e.g. resnet_v1, mobilenet_v1
- --sub-architecture SUB_ARCHITECTURE
The sub architecture (scaling factor) of the model the object belongs to; e.g. 50, 101, 152
- --framework FRAMEWORK
The framework the model the object belongs to was trained on; e.g. pytorch, tensorflow
- --repo REPO
The source repo for the model the object belongs to; e.g. sparseml, torchvision
- --dataset DATASET
The dataset the model the object belongs to was trained on; e.g. imagenet, cifar10
- --training-scheme TRAINING_SCHEME
The training scheme used on the model the object belongs to if any; e.g. augmented
- --sparse-name OPTIM_NAME
The name describing the sparsification of the model the object belongs to, e.g. base, pruned, pruned_quant
- --sparse-category OPTIM_CATEGORY
The degree of sparsification of the model the object belongs to; e.g. none, conservative (~100 baseline metric), moderate (>=99 baseline metric), aggressive (<99 baseline metric)
- --sparse-target OPTIM_TARGET
The deployment target of sparsification of the model the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu
- --release-version RELEASE_VERSION
the max release version of the model in semantic version format
- --page PAGE
The page of search results to view
- --page-length PAGE_LENGTH
The amount of search results per page to view
[–sub-architecture SUB_ARCHITECTURE] –framework FRAMEWORK –repo REPO –dataset DATASET [–training-scheme TRAINING_SCHEME] –sparse-name OPTIM_NAME –sparse-category OPTIM_CATEGORY [–sparse-target OPTIM_TARGET] [–release-version RELEASE_VERSION] [–save-dir SAVE_DIR]
Download a specific model from the repo.
- optional arguments:
- -h, --help
show this help message and exit
- --domain DOMAIN
The domain of the model the object belongs to; e.g. cv, nlp
- --sub-domain SUB_DOMAIN
The sub domain of the model the object belongs to; e.g. classification, segmentation
- --architecture ARCHITECTURE
The architecture of the model the object belongs to; e.g. resnet_v1, mobilenet_v1
- --sub-architecture SUB_ARCHITECTURE
The sub architecture (scaling factor) of the model the object belongs to; e.g. 50, 101, 152
- --framework FRAMEWORK
The framework the model the object belongs to was trained on; e.g. pytorch, tensorflow
- --repo REPO
The source repo for the model the object belongs to; e.g. sparseml, torchvision
- --dataset DATASET
The dataset the model the object belongs to was trained on; e.g. imagenet, cifar10
- --training-scheme TRAINING_SCHEME
The training scheme used on the model the object belongs to if any; e.g. augmented
- --sparse-name OPTIM_NAME
The name describing the sparsification of the model the object belongs to, e.g. base, pruned, pruned_quant
- --sparse-category OPTIM_CATEGORY
The degree of sparsification of the model the object belongs to; e.g. none, conservative (~100 baseline metric), moderate (>=99 baseline metric), aggressive (<99 baseline metric)
- --sparse-target OPTIM_TARGET
The deployment target of sparsification of the model the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu
- --release-version RELEASE_VERSION
the max release version of the model in semantic version format
- --save-dir SAVE_DIR
The directory to save the model files in, defaults to the cwd with the model description as a sub folder
sparsezoo.package module
-
sparsezoo.package.
check_package_version
(package_name: str, package_version: str, package_integration: Optional[str] = None)[source] Run a background thread to run version-check api
- Parameters
package_name – package name of the client
package_version – package version of the client
package_integration – package integration of the client
-
sparsezoo.package.
package_version_check_request
(package_name: str, package_version: str, package_integration: Optional[str])[source] Make an api call to api-neuralmagic.com, retrieve payload and check if the user is on the latest package version. Lambda: nm-get-latest-version
- Parameters
package_name – package name of the client
package_version – package version of the client
package_integration – package integration of the client
-
sparsezoo.package.
version_check_execution_condition
(package_name: str, package_version: str, package_integration: Optional[str])[source] Check if conditions are met to run the version-check api
- Parameters
package_name – package name of the client
package_version – package version of the client
package_integration – package integration of the client
sparsezoo.version module
Functionality for storing and setting the version info for SparseZoo
Module contents
Functionality for accessing models, recipes, and supporting files in the SparseZoo
Notify the user the last pypi package version